miércoles, 6 de junio de 2018

Trabajo, Energía y Potencia

Trabajo, Energía y Potencia


TRABAJO: Es una cantidad escalar igual al producto de la magnitud del desplazamiento y la componente de la fuerza en dirección del desplazamiento.

Se deben de cumplir tres requisitos :
1.- Debe haber una fuerza aplicada 
2.-La fuerza debe ser aplicada a través de cierta distancia (desplazamiento)
3.-La fuerza debe tener una componente a lo largo del desplazamiento.



 El trabajo realizado por una fuerza F provoca un desplazamiento s.

Trabajo = fuerza X desplazamiento.
T = Fx s

La magnitud del trabajo puede expresarse en términos del ángulo θ formado entre F y s.
Trabajo =(F cos θ)s

La fuerza que realiza el trabajo está dirigida íntegramente a lo largo del desplazamiento. Por ejemplo cuando se eleva un cuerpo en forma vertical o cuando una fuerza horizontal arrastra un objeto por el piso en este caso:
Trabajo = Fs 

En unidades del SI el trabajo se mide en Nxm esta unidad se llama joule (j)
Un joule es igual al trabajo realizado por una fuerza de un newton al mover un objeto a través de una distancia paralela de un metro.
8.2 cálculo del trabajo sin ángulo


ACTIVIDAD 1

1.- Un remolcador ejerce una fuerza constante de 4000 N sobre un barco y lo mueve una distancia de 15 m a través del puerto. ¿Qué trabajo realizó el remolcador?


DATOS FÓRMULA CÁLCULOS RESULTADOS 
F = 4000N T = Fs T = 4000N X 15m T = 6000N 
S =15 m
T = ? 




2.-¿que trabajo realiza una fuerza de 65 N al arrastrar un bloque como el de la figura 8.1 a través de una distancia de 38 m, cuando la fuerza es trasmitida por medio de una cuerda de 60° con la horizontal


DATOS FÓRMULA CALCULOS RESULTADOS 
F=65 N T =FXs FX = 65 N (cos 60°) T = 1235 j 
S = 38 m Fx = 32.5 N 
Θ = 60° T = Fx s = 32.5N X 38 m = 1235Nm 
TAREA 1

1.- Un mensajero lleva un paquete de 35 N desde la calle hasta el quinto piso de un edificio de oficinas, a una altura de 15 m. ¿Cuánto trabajo realiza?

2.- Julio realiza un trabajo de 176 J al subir 3 m. ¿Cuál es la masa de Julio?
8.3 trabajo y dirección de la fuerza. trabajo y resultante

objetivo: identificar la fuerza que realiza el trabajo

Trabajo resultante es la suma algebraica de los trabajos de las fuerzas individuales que actúan sobre un cuerpo en movimiento.
La realización de un trabajo necesita la existencia de una fuerza resultante.


Para distinguir la diferencia entre trabajo positivo y negativo se sigue la convención de que el trabajo de una fuerza es positivo si el componente de la fuerza se encuentra en la misma dirección que el desplazamiento y negativo si una componente de la fuerza se opone al desplazamiento real. 

Por ejemplo el trabajo que realiza una grúa al levantar una carga es positivo pero la fuerza gravitacional que ejerce la tierra sobre la carga ejerce un trabajo negativo.

8.4 aplicación del plano inclinado con el trabajo

objetivo: aplicar la dirección de las fuerzas en el plano inclinado. 


ACTIVIDAD 2.
Una fuerza de 80 N mueve un bloque de 5Kg hacia arriba por un plano inclinadoa 30°, según figura 2 el coeficiente de fricción cinético es de 0.25 y la longitud del plano son 20 metros ,calcular el trabajo que realizan cada una de las fuerzas sobre el bloque.

Solución :
Las fuerzas que actúan sobre el bloque son; Ŋ , Ŧk p y w



la fuerza de impulso pse ejerce en direccióny el desplazamiento.
Tp = ps = 80 N x 20 m= 1600 J
W =mg =5kg (9.8m/s2) = 49 N
Wx =49 (sen 30°) = 24.5N
Wy = 40 (cos 30°) = 42.2N
Pero como Ŧk = ŊμkyŊ= Wy
Ŧk = Ŋμk = μk Wy
Ŧk = (-0.25) (42.4N) = -10.6 N
El signomenos significa que va hacia abajo del plano 



ENERGÍA: es todo aquello que puede realizar un trabajo. Si un objeto tiene energía quiere decir que es capaz de ejercer una fuerza sobre otro objeto para realizar un trajo sobre él y si realizáramos una trabajo sobre un objeto, le proporcionamos a éste una cantidad de energía igual al trabajo realizado.

En este curso estudiaremos dos tipos de energía.
ENERGÌA CINÉTICA: es aquella que tiene un cuerpo en virtud de su movimiento.
ENERGÍA POTENCIAL : es la energía que tiene un sistema en virtud de su posición o condición.


Aplicación de la energía potencial y cinética

ENERGÍA CINÉTICA.

La relación entre la energía cinética y el trabajo ,considerando una fuerza F que actúa sobre un bloque como se indica en la figura:
Si el bloque tiene una velocidad inicial v0 y la fuerza F actúa através de la distancia s y la velocidad aumenta hasta la velocidad final vf .

El cuerpo tiene una masa m y la segunda ley de newton està dada por a proporción 
a= F / m ecc 1

Y se alcanza una velocidad final vfy quedar así
2as = v2f– v20 
despejando a = v2f– v20 / 2s

sustituyendo en la ecuación 1
F / a= v2f– v20 / 2s

resolviendo para Fs
Fs = ½ mvf – ½mv0

Como la cantidad del lado izquierdo de la ecuación representa el trabajo realizado sobre la masa m y la cantidad del lado derecho de la ecuación es el cambio de la energía cinética como resultado del trabajo .
Por lo tanto :Ek = ½ mv2


ACTIVIDAD 3.
Un rifle dispara una bala de 4.2 g con una rapidez de 965 mIs.

a) Encuentre la energía cinética de la bala.
b) ¿Cuánto trabajo se realiza sobre la bala si parte del reposo?
c) Si el trabajo se realiza sobre una distancia de 0.75 m, ¿cuál es la fuerza media sobre la bala?

DATOS FÓRMULA CALCULOS RESULTADOS 
m = 4.2 g Ek = ½ mv2 Ek = ½(.0042kg) (965m/s)2 Ek = 1955.6 j 
v= 965 m/s T =½ mv2f- ½ mv20
si v0 = o
quedaría: T =½ mv2f T = ½(.0042kg) (965m/s)2 Ek = 1955.6 j 
g = 9.9 m / s2 Fxs = ½ mv2f 
F =½ mv2f / S F =1955.6 j / .75m F = 2607 N 



ENERGÍA POTENCIAL:


La energía potencial implica que debe haber un potencial para realizar un trabajo.

La fuerza externa F necesaria para elevar un cuerpo debe ser igual al peso w y el trabajo realizado esta dado por 
Trabajo = Wh= mgh

Este trabajo puede ser realizado por el cuerpo después de haber caído una distancia h por lo tanto el cuerpo tiene una energía potencial igual al trabajo externo necesario para elevarlo. a partir de estos datos se puede calcular la energía potencial
Ep= mgh


Actividad 4
1.- Un libro de 2 Kg reposa sobre una mesa de 80 cm del piso. Encuentre la energía potencial del libro en relación
a) con el piso
b) con el asiento de una silla, situado a 40 cm del suelo
c) con el techo que está a 3 m del piso
DATOS FÓRMULA CALCULOS RESULTADOS 
m= 2kg Ep= mgh a) Ep = (2kg)(9.8m/s2)(0.8m) = 17.7 J 
h= 80 cm b) Ep = (2kg)(9.8m/s2)(0.4M) = 7.84 J 
g = 9.8 m/s^2 c) Ep = (2kg)(9.8m/s2)(-2.2m) = -43.1 J 




Conservación de la energía

Suponiendo una masa levantada a una altura h y luego se deja caer según la figura en el punto mas alto la energía potencial es mgh , a medida que la masa cae la energía potencial disminuye hasta llegar a cero, ( en ausencia de la fricción del aire ) pero comienza a aparecer la energía cinética en forma de movimiento y al final la energía cinética es igual a la energía total .

importante señalar que durante la caída :
energía total = Ep + Ek = constante 

a esto se le llama conservación de la energía; en ausencia de resistencia del aire, o cualquier fuerza ,la suma de las energías potencial y cinética es una constante siempre que no se añada ninguna otra energía al sistema.
(Ep + Ek )inicial = (Ep +Ek ) final 
mgh0 + ½ mv20 = mghf + ½ mv2f

si el objeto caea partir del reposo la energía total inicial es½ mv2f
mgh0 = ½ mv2f

y por lo tanto 



Potencia concepto y aplicación 

Objetivo : determinar la relación del tiempo, fuerza ,distancia y velocidad con la potencia

Potencia : es la rapidez con que se realiza un trabajo.
P / T= trabajo

La unidad de potencia en el SI es el joule por segundo y se denomina watt
1watt = 1 j/s 

y en el SUEU se usa la libra pie por segundo ft lb / s y para propósitos industriales 
1hp = 550 ft lb / s
1hp= 746 W = .746 kW
1kW = 1.34 hp
P / t = trabajo = Fs / t 
de donde 
p =F s / t = F v


Actividad 6 .
1.- La correa transportadora de una estación automática levanta 500 toneladas de mineral hasta una altura de 90 ft en una hora. ¿Qué potencia en caballos de fuerza se requiere para esto?

DATOS FÓRMULA CALCULOS RESULTADOS 
W= 500 Ton P = T / t P =500ton(2000lb/ton)(90ft)
/ 3600s P = 25000 ftlb/s 
H= 50 ft 1hp = 550 ft lb / s 45.45 hp. 
t = 3600 s hp = 25000 ft lb/sx1hp / 550 ft lb/s 

martes, 5 de junio de 2018

Rozamiento o Friccion

Razonamiento o Fricción 

La fuerza de fricción o la fuerza de rozamiento es la fuerza que existe entre dos superficies en contacto, que se opone al movimiento relativo entre ambas superficies (fuerza de fricción dinámica) o a la fuerza que se opone al inicio del deslizamiento (fuerza de fricción estática). 
Se genera debido a las imperfecciones, mayormente microscópicas, entre las superficies en contacto. 
Estas imperfecciones hacen que la fuerza perpendicular R entre ambas superficies no lo sea perfectamente, sino que forme un ángulo con la normal N (el ángulo de rozamiento). Por tanto, la fuerza resultante se compone de la fuerza normal N (perpendicular a las superficies en contacto) y de la fuerza de rozamiento F, paralela a las superficies en contacto.


Rozamiento entre superficies de dos sólido

En el rozamiento entre dos cuerpos se ha observado los siguientes hechos:
  1. La fuerza de rozamiento tiene dirección paralela a la superficie de apoyo.
  2. El coeficiente de rozamiento depende exclusivamente de la naturaleza de los cuerpos en contacto, así como del estado en que se encuentren sus superficies.
  3. La fuerza máxima de rozamiento es directamente proporcional a la fuerza normal que actúa entre las superficies de contacto.
  4. Para un mismo par de cuerpos (superficies de contacto), el rozamiento es mayor un instante antes de que comience el movimiento que cuando ya ha comenzado (estático Vs. cinético).
El rozamiento puede variar en una medida mucho menor debido a otros factores:
  1. El coeficiente de rozamiento es prácticamente independiente del área de las superficies de contacto.
  2. El coeficiente de rozamiento cinético es prácticamente independiente de la velocidad relativa entre los móviles.
  3. La fuerza de rozamiento puede aumentar ligeramente si los cuerpos llevan mucho tiempo sin moverse uno respecto del otro ya que pueden sufrir atascamiento entre sí.
Algunos autores sintetizan las leyes del comportamiento de la fricción en los siguientes dos postulados básicos:1
  1. La resistencia al deslizamiento tangencial entre dos cuerpos es proporcional a la fuerza normal ejercida entre los mismos.
  2. La resistencia al deslizamiento tangencial entre dos cuerpos es independiente de las dimensiones de contacto entre ambos.
La segunda ley puede ilustrarse arrastrando un bloque sobre una superficie plana. La fuerza de arrastre será la misma aunque el bloque descanse sobre la cara ancha o sobre un borde más angosto. Estas leyes fueron establecidas primeramente por Leonardo da Vinci al final del siglo XV, olvidándose después durante largo tiempo; posteriormente fueron redescubiertas por el ingeniero francés Amontons en 1699. Frecuentemente se les denomina también leyes de Amontons.

Tipos de fricción

Fig. 2 - Diagrama de fuerzas para el esquema de la figura 1. Según sea la magnitud del empuje T habrá fricción estática (equilibrio) o cinética (con movimiento).
Existen dos tipos de rozamiento o fricción, la fricción estática (Fe) y la fricción dinámica (Fd). El primero es la resistencia que se debe superar para poner en movimiento un cuerpo con respecto a otro que se encuentra en contacto. El segundo, es la resistencia, de magnitud considerada constante, que se opone al movimiento pero una vez que este ya comenzó. En resumen, lo que diferencia a un roce con el otro, es que el estático actúa cuando los cuerpos están en reposo relativo en tanto que el dinámico lo hace cuando ya están en movimiento.
La fuerza de fricción estática, necesaria para vencer la fricción homóloga, es siempre menor o igual al coeficiente de rozamiento entre los dos objetos (número medido empíricamente y que se encuentra tabulado) multiplicado por la fuerza normal. La fuerza cinética, en cambio, es igual al coeficiente de rozamiento dinámico, denotado por la letra griega , por la normal en todo instante.
No se tiene una idea perfectamente clara de la diferencia entre el rozamiento dinámico y el estático, pero se tiende a pensar que el estático es algo mayor que el dinámico, porque al permanecer en reposo ambas superficies pueden aparecer enlaces iónicos, o incluso microsoldaduras entre las superficies, factores que desaparecen en estado de movimiento. Este fenómeno es tanto mayor cuanto más perfectas son las superficies. Un caso más o menos común es el del gripaje de un motor por estar mucho tiempo parado (no solo se arruina por una temperatura muy elevada), ya que las superficies del pistón y la camisa, al permanecer en contacto y reposo durante largo tiempo, pueden llegar a soldarse entre sí.
Un ejemplo bastante común de fricción dinámica es la ocurrida entre los neumáticos de un auto y el pavimento en un frenado abrupto.
Fricción 00.svg
Como comprobación de lo anterior, se realiza el siguiente ensayo, sobre una superficie horizontal se coloca un cuerpo, y le aplica una fuerza horizontal F , muy pequeña en un principio, se puede ver que el cuerpo no se desplaza, la fuerza de rozamiento iguala a la fuerza aplicada y el cuerpo permanece en reposo, en la gráfica se representa en el eje horizontal la fuerza F aplicada, y en el eje vertical la fuerza de rozamiento Fr.
Entre los puntos O y A, ambas fuerzas son iguales y el cuerpo permanece estático; al sobrepasar el punto A el cuerpo súbitamente se comienza a desplazar, la fuerza ejercida en A es la máxima que el cuerpo puede soportar sin deslizarse, se denomina Fe o fuerza estática de fricción; la fuerza necesaria para mantener el cuerpo en movimiento una vez iniciado el desplazamiento es Fd o fuerza dinámica, es menor que la que fue necesaria para iniciarlo (Fe). La fuerza dinámica permanece constante.
Si la fuerza de rozamiento Fr es proporcional a la normal N, y a la constante de proporcionalidad se la llama :
Y permaneciendo la fuerza normal constante, se puede calcular dos coeficientes de rozamiento: el estático y el dinámico como:
donde el coeficiente de rozamiento estático  corresponde al de la mayor fuerza que el cuerpo puede soportar inmediatamente antes de iniciar el movimiento y el coeficiente de rozamiento dinámico  corresponde a la fuerza necesaria para mantener el cuerpo en movimiento una vez iniciado.

Fricción estática[editar]

Fricción 01.svg
Es la fuerza que se opone al inicio del deslizamiento . Sobre un cuerpo en reposo al que se aplica una fuerza horizontal F, intervienen cuatro fuerzas:
F: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
P: el peso del propio cuerpo
N: la fuerza normal.
Dado que el cuerpo está en reposo la fuerza aplicada y la fuerza de rozamiento son iguales, y el peso del cuerpo y la normal:
Se sabe que el peso del cuerpo P es el producto de su masa por la aceleración de la gravedad (g), y que la fuerza de rozamiento es el coeficiente estático por la normal:
esto es:
La fuerza horizontal F máxima que se puede aplicar a un cuerpo en reposo es igual al coeficiente de rozamiento estático por su masa y por la aceleración de la gravedad.

Fricción dinámica

Fricción 02.svg
Dado un cuerpo en movimiento sobre una superficie horizontal, deben considerarse las siguientes fuerzas:
Fa: la fuerza aplicada.
Fr: la fuerza de rozamiento entre la superficie de apoyo y el cuerpo, y que se opone al deslizamiento.
P: el peso del propio cuerpo, igual a su masa por la aceleración de la gravedad.
N: la fuerza normal, que la superficie hace sobre el cuerpo sosteniéndolo.
Como equilibrio dinámico, se puede establecer que:
Sabiendo que:
prescindiendo de los signos para tener en cuenta solo las magnitudes, se puede reescribir la segunda ecuación de equilibrio dinámico como:
Es decir, la fuerza de empuje aplicada sobre el cuerpo  es igual a la fuerza resultante  menos la fuerza de rozamiento  que el cuerpo opone a ser acelerado. De esa misma expresión se deduce que la aceleración  que sufre el cuerpo, al aplicarle una fuerza Fa mayor que la fuerza de rozamiento Fr con la superficie sobre la que se apoya.

Rozamiento en un plano inclinado

Rozamiento estático

Fricción 03.svg
Si sobre una línea horizontal r, se tiene un ángulo , y sobre este plano inclinado se coloca un cuerpo con rozamiento, se tendrán tres fuerzas que intervienen:
P: el peso del cuerpo vertical hacia abajo según la recta u, y con un valor igual a su masa por la aceleración de la gravedad: P = mg.
N: la fuerza normal que hace el plano sobre el cuerpo, perpendicular al plano inclinado, según la recta t
Fr: la fuerza de rozamiento entre el plano y el cuerpo, paralela al plano inclinado y que se opone a su deslizamiento.
Si el cuerpo está en equilibrio, no se desliza, la suma vectorial de estas tres fuerzas es cero:
Lo que gráficamente seria un triángulo cerrado formado por estas tres fuerzas, puestas una a continuación de otra, como se ve en la figura.
Fricción 04.svg
El peso puede descomponerse en una componente normal al plano Pn y una componentes tangente al plano Pt y la ecuación anterior puede escribirse componente a componentes simplemente como:
Dividiendo la primera componente entre la segunda se obtiene como resultado:
El coeficiente de rozamiento estático es igual a la tangente del ángulo del plano inclinado, en el que el cuerpo se mantiene en equilibrio sin deslizar, ello permite calcular los distintos coeficientes de rozamiento, simplemente colocando un cuerpo de un material concreto sobre un plano inclinado del material con el que se pretende calcular su coeficiente de rozamiento, inclinando el plano progresivamente se observa el momento en el que el cuerpo comienza a deslizarse, la tangente de este ángulo es el valor del coeficiente de rozamiento. Del mismo modo conocido el coeficiente de rozamiento entre dos materiales podemos saber el ángulo máximo de inclinación que puede soportar sin deslizar.

Rozamiento dinámico

Fricción 05.svg
En el caso de rozamiento dinámico en un plano inclinado, se tiene un cuerpo que se desliza, y siendo que está en movimiento, el coeficiente que interviene es el dinámico , así como una fuerza de inercia Fi, que se opone al movimiento, el equilibrio de fuerzas se da cuando:
descomponiendo los vectores en sus componentes normales y tangenciales se tiene:
teniendo en cuenta que:
y como en el caso de equilibrio estático, se tiene:
Con estas ecuaciones se determina las condiciones de equilibrio dinámico del cuerpo con fricción en un plano inclinado. Si el cuerpo se desliza sin aceleración (a velocidad constante) su fuerza de inercia Fi será cero, y se puede ver que:
esto es, de forma semejante al caso estático:
con lo que se puede decir que el coeficiente de rozamiento dinámico  de un cuerpo con la superficie de un plano inclinado, es igual a la tangente del ángulo del plano inclinado con el que el cuerpo se desliza sin aceleración, con velocidad constante, por el plano.

Valores de los coeficientes de fricción[editar]

Coeficientes de rozamiento de algunas sustancias[cita requerida]
Materiales en contacto
Articulaciones humanas0,020,003
Acero // Hielo0,0280,09
Acero // Teflón0,040,04
Teflón // Teflón0,040,04
Hielo // Hielo0,10,03
Esquí (encerado) // Nieve (0 °C)0,10,05
Acero // Acero0,150,09
Vidrio // Madera0,250,2
Caucho // Cemento (húmedo)0,30,25
Madera // Cuero0,50,4
Caucho // Madera0,70,6
Acero // Latón0,50,4
Madera // Madera0,70,4
Madera // Piedra0,70,3
Vidrio // Vidrio0,90,4
Caucho // Cemento (seco)10,8
Cobre // Hierro (fundido)10,3
En la tabla se listan los coeficientes de rozamiento de algunas sustancias donde
 Coeficiente de rozamiento estático,
 Coeficiente de rozamiento dinámico.
Los coeficientes de rozamiento, por ser relaciones entre dos fuerzas son magnitudes adimensionales.

Rozamiento entre sólido y fluido[editar]

La fricción aerodinámica depende del régimen o tipo de flujo que exista alrededor del cuerpo en movimiento:
  • Cuando el flujo es laminar la fuerza de oposición al avance puede modelizarse como proporcional a la velocidad del cuerpo, un ejemplo de este tipo de resistencia aerodinámica es la ley de Stokes para cuerpos esféricos.
  • Cuando el cuerpo se mueve rápidamente el flujo se vuelve turbulento y se producen remolinos alrededor del cuerpo en movimiento, y como resultado la fuerza de resistencia al avance es proporcional al cuadrado de la velocidad (v2), de hecho, es proporcional a la presión aerodinámica.

Rozamiento con lubricación

Una cuestión de interés práctico es un problema mixto donde pueden aparecer tanto fenómenos de rozamiento entre sólidos como entre fluido y sólido, dependiendo de la velocidad. Se trata del caso de dos superficies sólidas entre las cuales existe una fina capa de fluido. Stribeck2​ demostró que a muy bajas velocidades predomina un rozamiento como el que ocurre entre dos superficies secas, y a velocidades muy altas predomina un rozamiento hidrodinámico. La mínima fricción se alcanza para una velocidad intermedia dependiente de la presión del fluido, su "viscosidad cinemática".

Rozamiento en medios fluidos

La viscosidad es una medida de la resistencia de un fluido que está siendo deformado por una presión, una tensión tangencial o una combinación de tensiones internas. En términos generales, es la resistencia de un líquido a fluir, comúnmente dicho, es su "espesor". Viscosidad describe la resistencia interna de un líquido a fluir y puede ser pensado como una medida de la fricción del fluido. Así, el agua es "delgada", ya que tiene baja viscosidad, mientras que el aceite vegetal es "densa", con una mayor viscosidad. Todos los fluidos reales (excepto los superfluidos) tienen cierta resistencia a la tensión. Un fluido que no tiene resistencia al esfuerzo cortante se conoce como un fluido ideal o líquido no viscoso.
Por ejemplo, un magma de alta viscosidad creará un volcán alto, porque no se puede propagar hacia abajo con suficiente rapidez; la lava de baja viscosidad va a crear un volcán en escudo, que es grande y ancho. El estudio de la viscosidad se conoce como reología.
El modelo más simple de fluido viscoso lo constituyen los fluidos newtonianos en los cuales el vector tensión, debido al rozamiento entre unas capas de fluido y otras, viene dado por:
Donde:
, son las componentes de la velocidad.
 son las coordenadas cartesianas (x, y, z).
Para un flujo unidimensional la anterior ecuación se reduce a la conocida expresión: